Publications
2024
- Schneider, M., Krug, R., Vaskevicius, N., Palmieri, L. And Boedecker, J. (2024). The Surprising Ineffectiveness of Pre-Trained Visual Representations for Model-Based Reinforcement Learning. 38th Conference on Neural Information Processing Systems (NeurIPS 2024).
- Wang, J., Li, Y., Zhang, Y., Pan, W., & Kaski, S. (2024). Open Ad Hoc Teamwork with Cooperative Game Theory. International Conference on Machine Learning.
- Zhang, Y., Deekshith, U., Wang, J., & Boedecker, J. LCPPO: An Efficient Multi-agent Reinforcement Learning Algorithm on Complex Railway Network. In 34th International Conference on Automated Planning and Scheduling.
2023
- Dreissig, M., Piewak, F., & Boedecker, J. (2023). On the Calibration of Uncertainty Estimation in LiDAR-based Semantic Segmentation. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC) (pp. 4798-4805). IEEE.
- Dorka, N., Welschehold, T., Boedecker, J., & Burgard, W. (2023). Adaptively calibrated critic estimates for deep reinforcement learning. IEEE Robotics and Automation Letters, 8(2), 624-631. PDF
- Ghezzi, A., Hoffman, J., Frey, J., Boedecker, J., & Diehl, M. (2023). Imitation Learning from Nonlinear MPC via the Exact Q-Loss and its Gauss-Newton Approximation. In 2023 62nd IEEE Conference on Decision and Control (CDC) (pp. 4766-4771). IEEE.
- Guttikonda, S., Achterhold, J., Li, H., Boedecker, J., & Stueckler, J. (2023). Context-Conditional Navigation with a Learning-Based Terrain-and Robot-Aware Dynamics Model. In 2023 European Conference on Mobile Robots (ECMR) (pp. 1-7). IEEE.
- von Hartz, J. O., Chisari, E., Welschehold, T., Burgard, W., Boedecker, J., & Valada, A. (2023). The Treachery of Images: Bayesian Scene Keypoints for Deep Policy Learning in Robotic Manipulation. In: IEEE Robotics and Automation Letters.
-
Kiessner, A. K., Schirrmeister, R. T., Gemein, L. A., Boedecker, J., & Ball, T. (2023). An extended clinical EEG dataset with 15,300 automatically labelled recordings for pathology decoding. NeuroImage: Clinical, 39, 103482. PDF
- Mirchevska, B., Werling, M., & Boedecker, J. (2023). Optimizing trajectories for highway driving with offline reinforcement learning. Frontiers in Future Transportation, 4, 1076439. PDF
- Naouar, M., Kalweit, G., Klett, A., Vogt, Y., Silvestrini, P., Ramirez, D. L. I., Mertelsmann, R., Boedecker, J., & Kalweit, M. (2023). CellMixer: Annotation-free Semantic Cell Segmentation of Heterogeneous Cell Populations. NeurIPS 2023 Workshop on Medical Imaging. arXiv
- Naouar, M., Kalweit, G., Mastroleo, I., Poxleitner, P., Metzger, M., Boedecker, J., & Kalweit, M. (2023). Robust Tumor Detection from Coarse Annotations via Multi-Magnification Ensembles. Preprint arXiv
- Zhang, Y., Wang, J., & Boedecker, J. (2023). Robust Reinforcement Learning in Continuous Control Tasks with Uncertainty Set Regularization. Accepted at CoRL 2023. PDF
- Zhu, H., De La Crompe, B., Kalweit, G., Schneider, A., Kalweit, M., Diester, I., & Boedecker, J. (2023). Multi-intention Inverse Q-learning for Interpretable Behavior Representation.
2022
- Borja-Diaz, J., Mees, O., Kalweit, G., Hermann, L., Boedecker, J., & Burgard, W. (2022). Affordance learning from play for sample-efficient policy learning. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 6372-6378). IEEE. PDF
-
Chisari, E., Welschehold, T., Boedecker, J., Burgard, W., & Valada, A. (2022). Correct me if i am wrong: Interactive learning for robotic manipulation. IEEE Robotics and Automation Letters, 7(2), 3695-3702. PDF
- Kalweit, G., Kalweit, M., Alyahyay, M., Jaeckel, Z., Steenbergen, F., Hardung, S., Diester, I., & Boedecker, J. (2022). NeuRL: Closed-form Inverse Reinforcement Learning for Neural Decoding. Accepted at ICML 2021 Workshop on Computational Biology.
- Kalweit, G., Kalweit, M., & Boedecker, J. (2022). Robust and Data-efficient Q-learning by Composite Value-estimation. Transactions on Machine Learning Research 2022. PDF
- Kalweit, M., Kalweit, G., Werling, M., & Boedecker, J. (2022). Deep surrogate Q-learning for autonomous driving. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 1578-1584). IEEE. PDF
- Rosete-Beas, E., Mees, O., Kalweit, G., Boedecker, J., & Burgard, W. (2022). Latent plans for task-agnostic offline reinforcement learning. In Conference on Robot Learning (pp. 1838-1849). PMLR. PDF
2021
- Kalweit, G., Huegle, M., Werling, M., & Boedecker, J. (2021). Q-learning with long-term action-space shaping to model complex behavior for autonomous lane changes. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5641-5648). IEEE. PDF
- Kalweit, M., Kalweit, G., & Boedecker, J. (2021). AnyNets: Adaptive Deep Neural Networks for Medical Data with Missing Values. In IJCAI 2021 Workshop on Artificial Intelligence for Function, Disability, and Health (pp. 12-21). PDF
-
Kalweit, M., Walker, U. A., Finckh, A., Müller, R., Kalweit, G., Scherer, A., Boedecker, J., & Hügle, T. (2021). Personalized prediction of disease activity in patients with rheumatoid arthritis using an adaptive deep neural network. PLoS One, 16(6), e0252289. PDF
-
Mirchevska, B., Hügle, M., Kalweit, G., Werling, M., & Boedecker, J. (2021). Amortized Q-learning with model-based action proposals for autonomous driving on highways. In 2021 IEEE international conference on robotics and automation (ICRA) (pp. 1028-1035). IEEE. PDF
-
Ranjbar, A., Vien, N. A., Ziesche, H., Boedecker, J., & Neumann, G. (2021). Residual feedback learning for contact-rich manipulation tasks with uncertainty. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2383-2390). IEEE. PDF
2020
-
Frison, L., Paul, S., Koller, T., Fischer, D., Frison, G., Boedecker, J., & Engelmann, P. (2020). Hardware-in-the-loop test of learning-based controllers for grid-supportive building heating operation. IFAC-PapersOnLine, 53(2), 17107-17112.
-
Gemein, L. A., Schirrmeister, R. T., Chrabąszcz, P., Wilson, D., Boedecker, J., Schulze-Bonhage, A., Hutter, F., & Ball, T. (2020). Machine-learning-based diagnostics of EEG pathology. NeuroImage, 220, 117021.
- Hügle, M., Kalweit, G., Hügle, T., Boedecker, J. (2020). A Dynamic Deep Neural Network For Multimodal Clinical Data Analysis. AAAI 2020 Workshop on Health Intelligence. Explainable AI in Healthcare and Medicine. Studies in Computational Intelligence, Springer. arXiv
-
Hügle, M., Kalweit, G., Werling, M., & Boedecker, J. (2020). Dynamic interaction-aware scene understanding for reinforcement learning in autonomous driving. In 2020 IEEE international conference on robotics and automation (ICRA) (pp. 4329-4335). IEEE.
-
Hügle, M., Omoumi, P., van Laar, J. M., Boedecker, J., & Hügle, T. (2020). Applied machine learning and artificial intelligence in rheumatology. Rheumatology advances in practice, 4(1), rkaa005.
- Kalweit, G., Huegle, M., Werling, M., & Boedecker, J. (2020). Deep constrained q-learning. arXiv
- Kollmitz, M., Koller, T., Boedecker, J., & Burgard, W. (2020). Learning human-aware robot navigation from physical interaction via inverse reinforcement learning. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 11025-11031). IEEE.
2019
-
Abou-Hussein, M., Müller, S. H., & Boedecker, J. (2019). Multimodal spatio-temporal information in end-to-end networks for automotive steering prediction. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 8641-8647). IEEE.
-
-
Huegle, M., Kalweit, G., Mirchevska, B., Werling, M., & Boedecker, J. (2019). Dynamic input for deep reinforcement learning in autonomous driving. In 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 7566-7573). IEEE.
-
Huegle, M., Kalweit, G., Werling, M., & Boedecker, J. (2019).
-
-
-
Koller, T., Berkenkamp, F., Turchetta, M., Boedecker, J., and Krause, A. (2019). Learning-based Model Predictive Control for Safe Reinforcement Learning. Extended abstract at RSS 2019 Workshop on Robust Autonomy.
-
Kuhner, D., Fiederer, L. D. J., Aldinger, J., Burget, F., Völker, M., Schirrmeister, R. T., Do, C., Boedecker, J., Nebel, B., Ball, T., & Burgard, W. (2019). A service assistant combining autonomous robotics, flexible goal formulation, and deep-learning-based brain–computer interfacing. Robotics and Autonomous Systems, 116, 98-113.
-
Wülfing, J. M., Kumar, S. S., Boedecker, J., Riedmiller, M., & Egert, U. (2019). Adaptive long-term control of biological neural networks with deep reinforcement learning. Neurocomputing, 342, 66-74.
-
-
Zhang, J., Wetzel, N., Dorka, N., Boedecker, J., & Burgard, W. (2019). Scheduled intrinsic drive: A hierarchical take on intrinsically motivated exploration.
2018
2017
-
Burget, F., Fiederer, L.D.J., Kuhner, D., Völker, M., Aldinger, J., Schirrmeister, R.T., Do, C., Boedecker, J., Nebel, B., Ball, T. and Burgard, W. (2017) Acting thoughts: Towards a mobile robotic service assistant for users with limited communication skills. In Mobile Robots (ECMR), 2017 European Conference on (pp. 1-6). IEEE. PDF
-
Groß, W., Lange, S., Bödecker, J., & Blum, M. (2017). Predicting Time Series with Space-Time Convolutional and Recurrent Neural Networks. Proc. of the 25th ESANN: 71-76. PDF
-
Kalweit, G., & Boedecker, J. (2017). Uncertainty-driven imagination for continuous deep reinforcement learning. In Conference on robot learning (pp. 195-206). PMLR. PDF
-
Mirchevska, B., Blum, M., Louis, L., Boedecker, J., & Werling, M. (2017).Reinforcement Learning for Autonomous Maneuvering in Highway Scenarios. In Workshop for Driving Assistance Systems and Autonomous Driving (pp. 32-41). PDF
-
Zhang, J., Springenberg, J. T., Boedecker, J., & Burgard, W. (2017). Deep reinforcement learning with successor features for navigation across similar environments. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2371-2378). IEEE. PDF
-
Zhang, J., Tai, L., Liu, M., Boedecker, J., & Burgard, W. (2017). Neural slam: Learning to explore with external memory.
2016
-
Heller, S., Kroener, M., Woias, P., Donos, C., Manzouri, F., Lachner-Piza, D., Schulze-Bonhage, A., Duempelmann, M., Blum, M., & Boedecker, J. (2016). On the way to a self-sufficient closed-loop implant for early seizure detection. Biomedical Engineering/Biomedizinische Technik 61, no. s1: 133-136.
-
Kumar, S. S., Wülfing, J., Okujeni, S., Boedecker, J., Riedmiller, M., & Egert, U. (2016). Autonomous Optimization of Targeted Stimulation of Neuronal Networks. PLoS computational biology, 12(8), e1005054. web
-
Springenberg, J. T., Wilmes, K. A., & Boedecker, J. (2016). Towards Local Learning and MCMC Inference in Biologically Plausible Deep Generative Networks. In NIPS Workshop Brains and Bits: Neuroscience Meets Machine Learning. PDF
2015
-
Böhmer, W., Springenberg, J. T., Boedecker, J., Riedmiller, M., & Obermayer, K. (2015). Autonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations. KI - Künstliche Intelligenz pp. 1-10. Springer Berlin Heidelberg. doi web
-
Watter, M., Springenberg, J., Boedecker, J., & Riedmiller, M. (2015). Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images. In Advances in Neural Information Processing Systems 28. pp. 2728–2736. PDF
2014
-
Boedecker, J., Springenberg, J. T., Wülfing, J., & Riedmiller, M. (2014). Approximate real-time optimal control based on sparse gaussian process models. In 2014 IEEE symposium on adaptive dynamic programming and reinforcement learning (ADPRL) (pp. 1-8). IEEE. PDF
-
Kumar, S. S., Wülfing, J., Boedecker, J., Wimmer, R., Riedmiller, M., Becker, B., & Egert, U. (2014, July). Autonomous control of network activity. In Proc. of the 9th Int’l Meeting on Substrate-Integrated Microelectrode Arrays (MEA). PDF
- Obst, O., Boedecker, J. (2014) Guided Self-Organization of Input-Driven Recurrent Neural Networks. In Guided Self-Organization: Inception. pp. 319-340. Springer Berlin Heidelberg. doi web
2013
- Obst, O., Boedecker, J., Schmidt, B., & Asada, M. (2013). On active information storage in input-driven systems. web
2012
-
Boedecker, J., Obst, O., Kashima, Y., & Asada, M. (March 29-30 2012) Intrinsic computational capabilities of reservoir computing networks in different dynamics regimes and their relation to task performance. Lyon, France.
-
Hartmann, C., Boedecker, J., Obst, O., Ikemoto, S., & Asada, M. (2012). Real-Time Inverse Dynamics Learning for Musculoskeletal Robots based on Echo State Gaussian Process Regression. In Proceedings of Robotics: Science and Systems. Sydney, Australia.
2011
-
Grzyb, B. J., Boedecker, J., Asada, M., & del Pobil, A. P. (September 2011). Elevated activation of dopaminergic brain areas facilitates behavioral state transition. In IROS 2011 Workshop on Cognitive Neuroscience Robotics.
-
Grzyb, B. J., Boedecker, J., Asada, M., del Pobil, A. P., & Smith, L. B. (2011). Between Frustration and Elation: Sense of Control Regulates the Intrinsic Motivation for Motor Learning.
-
Grzyb, B. J., Boedecker, J., Asada, M., del Pobil, A. P., & Smith, L. B. (2011). Trying anyways: how ignoring the errors may help in learning new skills. In First Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics.
-
Boedecker, J. (2011) Echo State Network Reservoir Shaping and Information Dynamics at the Edge of Chaos. Osaka, Japan.
2010
- Obst, O., Boedecker, J., & Asada, M. (2010) Improving Recurrent Neural Network Performance Using Transfer Entropy. In Neural Information Processing Models and Applications. pp. 193–200. Springer. web
2009
-
Boedecker, J., Obst, O., Mayer, N. M., & Asada, M., (2009) Studies on Reservoir Initialization and Dynamics Shaping in Echo State Networks. In Proceedings of the 17th European Symposium On Artificial Neural Networks ({ESANN}'09). pp. 227–232. D-Side Publications. Evere, Belgium. web
-
Mayer, N. M., Boedecker, J., & Asada, M. (2009) Robot motion description and real-time management with the Harmonic Motion Description Protocol. Robotics and Autonomous Systems 57 (8) pp. 870-876. web
2008
- Boedecker, J., & Asada, M. (2008) SimSpark – Concepts and Application in the 3D Soccer Simulation League. In Workshop on The Universe of RoboCup Simulators at SIMPAR 2008. web
-
da Silva Guerra, R., Boedecker, J., Mayer, N., Yanagimachi, S., Hirosawa, Y., Yoshikawa, K.,Namekawa, M., & Asada, M. (2008). Introducing physical visualization sub-league. In RoboCup 2007: Robot Soccer World Cup XI 11 (pp. 496-503). Springer Berlin Heidelberg.
-
Mayer, N. M., Boedecker, J., Masui, K., Ogino, M., & Asada, M. (2008). HMDP: A new protocol for motion pattern generation towards behavior abstraction. In RoboCup 2007: Robot Soccer World Cup XI 11 (pp. 184-195). Springer Berlin Heidelberg. web
2007
-
da Silva Guerra, R., Boedecker, J., & Asada, M. (2007) Physical Visualization Sub-League: A New Platform for Research and Edutainment. pp. 15–20.
- da Silva Guerra, R., Boedecker, J., Yanagimachi, S., & Asada, M. (2007) Introducing a New Minirobotics Platform for Research and Edutainment. In Proceedings of the 4th International Symposium on Autonomous Minirobots for Research and Edutainment.
- da Silva Guerra, R., Boedecker, J., Mayer, N. M., Yanagimachi, S., Ishiguro, H., & Asada, M. (2007) A new minirobotics system for teaching and researching agent-based programming. In CATE '07: Proceedings of the 10th IASTED International Conference on Computers and Advanced Technology in Education. pp. 39–44. ACTA Press. Anaheim, CA, USA.
-
Mayer, N. M., Boedecker, J., & Asada, M. (2007) On Standardization in the RoboCup Soccer Humanoids Leagues. web
-
Mayer, N. M., Boedecker, J., da Silva Guerra, R., Obst, O., & Asada, M. (2007). 3D2Real: Simulation league finals in real robots. In RoboCup 2006: Robot Soccer World Cup X 10 (pp. 25-34). Springer Berlin Heidelberg. web
2006
-
Boedecker, J., Mayer, N. M., Ogino, M., da Silva Guerra, R., Kikuchi, M., & Asada, M. (2006) Getting closer: How Simulation and Humanoid League can benefit from each other. In Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005). pp. 93-98. Springer. web
2005
-
Obst, O., Maas, A., & Boedecker, J. (Jul 2005) HTN Planning for Flexible Coordination Of Multiagent Team Behavior. pp. 87–94. Edinburgh, Scotland.